Tangible Music Programming Blocks for Visually
Impaired Children

Alpay Sabuncuoglu
asabuncuoglu13@ku.edu.tr
Koc University Intelligent User Interface Lab
Twin Science and Robotics

ABSTRACT

Programming can benefit children on learning science, math,
and creative thinking, and has become a part of the primary
school curriculum. However, programming tools for visually
impaired children are still scarce. We developed an afford-
able and accessible tangible music platform for visually im-
paired children that aims to teach the basics of programming
through music creation. By ordering the tangible blocks in an
algorithmic structure, the children can create a melody. The
physical and conceptual design of the system was developed
with the help of visually impaired developers. We conducted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
TEI °20, February 9-12, 2020, Sydney, NSW, Australia

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6107-1/20/02...$15.00
https://doi.org/10.1145/3374920.3374939

C R

Figure 1: Music blocks in action: A shot from workshop to test our tangible coding platform.

|

a user study with fourteen visually impaired middle school
children to observe their interactions with the prototype. In
this paper, we present our design, provide several TUI de-
sign considerations for students with low to zero sight, and
discuss the results of our user study and future directions.

CCS CONCEPTS

« Human-centered computing — Empirical studies in ac-
cessibility; « Social and professional topics — K-12 edu-
cation; « Hardware — Tactile and hand-based interfaces.

KEYWORDS

Tangible programming blocks, Music programming, Visually-
impaired student education

ACM Reference Format:

Alpay Sabuncuoglu. 2020. Tangible Music Programming Blocks for
Visually Impaired Children. In Fourteenth International Conference
on Tangible, Embedded, and Embodied Interaction (TEI *20), Febru-
ary 9-12, 2020, Sydney, NSW, Australia. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3374920.3374939

lol

https://doi.org/10.1145/3374920.3374939
https://doi.org/10.1145/3374920.3374939

1 INTRODUCTION

Programming is integrated into the primary education cur-
riculum as it becomes a crucial 21st century need for various
employment fields [8]. Hence, through programming, pupils
acquire many vital skills such as creative and computational
thinking, gain hands-on abilities such as building electronics,
animations and integrate technology into daily life. How-
ever, commonly used programming tools depend on visual
elements, which makes them rather inaccessible for visu-
ally impaired children. This can lead to an inequality in the
development of the aforementioned skills for the visually im-
paired community. To that end, we developed an affordable
tangible programming tool for visually impaired children to
create music with algorithms.

Most popular programming platforms for early education,
such as Scratch and Alice, use drag and drop blocks in a visual
interface to create programs [5, 12]. Similarly, electronic
development boards such as Arduino and Micro:bit are also
coded with drag and drop blocks or writing text scripts [2,
9]. In this regard, all these popular tools highly depend on
visual graphics and are inaccessible for students with vision
impairment.

Current research on early programming education for vi-
sually impaired students is limited, but the interest grows
due to the prevalence of programming in the primary school
curriculum. Project Torino [13] and Blocks4All [11] develop
accessible platforms to introduce programming in early edu-
cation. With these platforms, children create stories or code
robot movements. However, these platforms rely on costly
electronic parts, which lowers their accessibility in terms of
affordability.

In light of these, we developed an affordable tangible pro-
gramming tool to create music with algorithms. Our block
set consists of twenty-five coding blocks varying in levels
of perceptual information (shape and surface detail). These
design decisions were made with the guidance of visually
impaired developers. The music blocks only require NFC
stickers for fast and reliable recognition, and we synthesize
the music on Android phones. We chose music creation as the
subject because it is one of the most preferred and accessible
creative subjects for the visually impaired community.

In this paper, we share our research process; (1) workshop
with visually impaired developers to derive design consider-
ations for tangible user interface for children with visual im-
pairment, (2) development of the conceptual prototype, and
(3) user study with 14 visually impaired children (Mage=12.4).
We discuss our observations from the user study and the next
step for the system.

We contribute to the literature 1) as the first algorithmic
style- tangible music creation platform for visually impaired
children and 2) provide several TUI design considerations

for students with low to zero sight. Our research can inspire
researchers aiming to develop tools for the visually impaired
community.

2 THEORY AND RELATED WORK

In this section, we give background of programming educa-
tion and tangible programming tools. We keep the focus on
theory and related work about visually impaired students.

Programming Education

According to the 2018 estimates by the World Health Orga-
nization, 217 million people have moderate to severe vision
impairment, and 36 million people are blind [3]. Stackover-
flow’s recent survey reports 1.5% of the developer community
is visually impaired [16]. Developers with a severe visual
disability use high contrast colors, screen magnifiers and
readers to write scripts on development environments [15].
Additionally, projects like CodeTalks explore potential ap-
plications for integrated development environment (IDE)
accessibility [10].

Visually impaired students usually learn to program via
text-based coding with the help of a mentor. If the students
struggle with these kinds of environments, their motivation
levels are likely to drop. Normally, to maintain motivation,
teachers make use of children’s interests, such as creating
games and animations in Scratch, but these platforms depend
on graphics.

To lower the barrier for coding education, Blocks4All
makes block programming accessible via new touch screen
interactions and tactile-robot movement outputs. Since most
of the visually impaired children can use touch screen in-
teraction, interfaces that allow a similar interaction enables
them to code rapidly and easily. However, Blocks4All’s touch
interaction is limited for the long and nested codes and the
platform requires a robot to code, which makes it costly.

Microsoft’s Project Torino allow children to create some
stories and add music with fundamental programming el-
ements. Their project also serves one of the most detailed
research for introductory inclusive programming. However,
developing such an interface that relies on many electronic
parts is still an expensive solution for most of the families.

Tangible Programming Tools

Tangible User Interfaces (TUI) allow hands-on interaction
and control over digital features with physical artifacts [7].
Most technologies developed for visually impaired students
rely on audio and touch interaction. On the other hand, the
literature points at the various benefits of tangible interaction
on learning.

Using tangible elements at the classroom keeps students
physically active, supports collaboration and development
of motor skills and spatial understanding [17]. Zuckerman

et.al. list the advantages of tangible interfaces as a teaching
tool for abstract problem domains under three categories: (1)
Tangibles provide the natural environment for learning with
activating multiple senses such as touch, sound or vision.
(2) They offer a great variety of interaction, so increase the
accessibility for mental and physical disabilities. (3) Offering
a multi-hand interface facilitates natural group interaction,
and increase collaboration. These advantages led to the de-
velopment of various tangible programming tools to teach
computational thinking [6][18].

Moreover, tangible technology supports collaboration be-
tween people of different abilities, alluding to the consequent
learning that can then take place [4]. Therefore physical com-
puting is especially desirable between children with mixed
visual abilities.

3 DESIGN OF THE MUSIC BLOCKS
Workshop with Visually Impaired Developers

This step of our research was formulated to identify visually
impaired children’s needs in a learning environment and
deriving design considerations. We conducted a workshop
session with two visually impaired developers. These de-
velopers work as a team for a children-oriented technology
company and have been coding for more than two years.
They work with visually impaired children to teach coding
and know about the obstacles they encounter.

In the session, we went through the elements of Tangible
Learning Design Framework. In this framework, Antle and
Wise provide an extensive guideline based on theories of
cognition [1]. The principles allowed us to distribute the
roles of tangibles to control different outputs, set up actions
and decide on informational relations. Upon this introduc-
tion, the developers and authors started to generate design
considerations.

The TUI design considerations we formulated for vi-
sually impaired children are as follows:

(1) Avoid the extensive use of Braille alphabet. Currently,
the visually impaired developers teach children pro-
gramming with electronic blocks that have Braille code
stickers. However, the developers stated that the stu-
dents spend a lot of time trying to read and remember
the codes. So, in our design, we only used Braille al-
phabet for communicating the musical notes (Table
1).

(2) Do not use various feedback modalities for the recog-
nition of the blocks. Using several feedback types (i.e.
audio, haptics) to help children recognize the function
of the blocks might overwhelm and confuse the stu-
dents. We decided to use only shapes as the distinctive
feature between the blocks (Table 1). Yet, we created
an extra info block to identify the blocks with audio,

as some students might be more used to having audio
feedback.

Use abstract and basic shapes rather than detailed icons.
Shape differentiation provides only one level of infor-
mation (i.e. family a, family b). If the tangibles need
to be more informative (i.e. family b, member x) using
the surface information is available. However, surface
engravings need to be easily discernible by touch and
conceptually understandable at the same time. For ex-
ample, a piano icon can be engraved on a tangibles
surface, but the students might not know what a piano
looks like, or might need extra time to comprehend the
engraving itself. Therefore, we adopted simple icons
and explored surface information alternatively (Table

1.

Conceptual Prototype

—~
w
~

With the principles of tangible learning framework and the
guidance of the first design session, we designed twenty-five
tangible block pieces and developed an Android application.
The blocks allow students to design an algorithmic melody
with different octave, rhythm, and sound.

Form & Material: Our block set consists of five interface
(circular blocks) and twenty coding blocks that contain two
levels of perceptual information which are shape and surface
details.

On the first level, there are 7 shape families; The interface
blocks are all circular and the coding blocks have the rest of
the shapes shown in Table 1. Amongst the shape families,
the members are distinguished via their surface properties.
For example, out of the coding blocks, the sound block family
is hexagonal. A hexagonal member that has a topographic
height covering less than half of its volume is the piano block.

We used cardboard as the tangible material due to its
affordability and ease in shape giving (3). The 2mm width
cardboard blocks were glued on top of each other. All the
forms were within the boundary dimensions of 8 mm height
and 4 mm in diameter.

Interaction: Tangible blocks are laser-cut card-boards
with NFC stickers inside. We use card-board as an affordable
and fast solution, but it can be 3D printed or built by any
other material as long as students are comfortable with the
material. To read the NFC stickers and run the output we
developed an Android application. We didn’t use a camera
system to recognize the blocks because the system would
constrain the working space due to the camera’s viewing
region. Hence, students would not be able to understand if
the block is in viewing the region or identify such a problem
easily.

To keep track of the blocks on the surface we used a rack
as seen in Figure 4. Additionally, they can check the pro-
gram with switching to the info area and then tap onto the

Table 1: Sample Tangible Blocks and Explanations

Blocks Explanation Blocks Explanation
e
(> S | Start block initiates the code. It is the Info block opens the info area. When
\\:ﬁ // only block without audio help. When the application is at info mode, it gives
T / the student is at info area, if this block 9 J audio hints about blocks.
- is recognized, application returns to —
code area.
Clear All block clears all the created [Run block executes the code and start
\ / code. Students use them after the start &7” j the melody. If the device supports the
\ J block to be sure about they start with |~ | NFC auto-start, students can open the
— an empty code. ~_ application with tapping to this block

C Loop block starts a loop with the code

T part introduced afterwards. (e.g. A > B
> Loop > C > D will run A and B once
then starts a loop of C and D.)

Wave Type block changes the type of
the wave. We put two options: Square
or Sine.

./ Sound block changes the instrument
sample of the music. Three options
are provided: Cello, Piano and Harmo-
nium.

Frequency block changes the fre-
quency of the following blocks. We de-
signed three levels of frequency: low
(+), medium (++) and high (+++) We
placed (+) sign to link with the level
of frequency.

Beat block changes the beat of the
music. For now, it affects the whole
melody. So, they can place it any-
where on the code. Similar to fre-
quency blocks, has three options: slow,
moderate and fast

Note block have 8 options: 7 Notes
and 1 Stop. They have braille alphabet
on the blocks.

RUN block to hear all the script. The Android application
recognizes the blocks with NFC stickers as the coder moves
the phone over each block one at a time. As the last step,
the play block is scanned and the melody plays from the
speakers. The application has two modes: code and info. To
create the code and play the melody, students need to be at
code mode. If students switch to info mode, they can listen
to the functionality of the blocks.

Language: The design of the blocks programming lan-
guage has a very similar style with Processing [14]!. The
programmer needs to specify the attributes first, then define
the object that will carry the properties. For example, the
Figure 2 shows a sample code and its output from Processing.
Attribute-oriented design allow us to run programs without
inputs and variables for this prototype, yet it is a powerful
concept to introduce children to develop their algorithmic
thinking skills.

IThe kit is open source, the code is available at https://github.com/
asabuncuoglu13/budgie-tangible-music-kit

https://github.com/asabuncuoglu13/budgie-tangible-music-kit
https://github.com/asabuncuoglu13/budgie-tangible-music-kit

fill(255, 0, 0); ®
rect(60,100, 100, 100);
ellipse(20, 40, 30, 30);
noStroke() ;

fill(e, 255, 0);

rect(60, 20, 100, 40);

Figure 2: Processing Example and Output

In the code, the fill command affects both rect and ellipse
objects. Similarly, our system takes attributes first and until
recognizing an alternative attribute, code blocks will affect
from the attribute. So, students do not need to recognize
the same block to add the same attribute for the notes. For
example,

Start > Add Note C > High Frequency > Add Note D > Add
Note A > Run

Will run C4 - D3 - A3 melody and play a melody of normal
frequency C, then low frequency D and A. The standard
frequency is 4, so if you do not specify the frequency, all the
notes will play at 4 octaves.?

We utilized Processing language as the core of our tan-
gible kit for three reasons: (1) The language has an active
community of creative coders, which allow novice program-
mers to discuss their problems about coding and music. (2)
Processing has a sound library, if the learner would like to
continue with a text-based programming platform, it will be
familiar. (3) The language can be deployed to multiple plat-
forms and converted to different programming languages
such as JavaScript or Python.

S S - em
Hd"
-

PR T BT

AT TTIRATETT T TTL R

Figure 3: Blocks and rack used during the workshop. The
rack eases the ordering of music blocks for the novice pro-
grammers.

2The demo of the system can be accessed at https://budgi.es/demo.html,
people can experiment with the system from online platform before building
tangibles.

——

e

Figure 4: NFC reading of a music block. Students read the
blocks one by one with their mentor’s phones.

4 USER STUDY

We conducted a user study to observe children’s interaction
with the tangible blocks and the mobile device. Fourteen
visually impaired students (7 boys, 7 girls, Mage=12.5) with
various socio-economic-statuses participated in the study.

In the first five minutes of the workshop, we had a quick
chat about their interests and current knowledge of program-
ming. All the participants have an interest in technology and
programming, but have limited or no knowledge of pro-
gramming. Only two of them have previous experience on
text-based coding and three of them have experience with
music. Overall, students use computers or mobile phones
regularly.

For the user study, students were randomly selected to
create groups of two or three. This grouping was made to
observe the collaboration between group members. Every
group had a mentor to keep them informed and to help them
find the blocks for the first time.

We designed this user study structure to make participants
experience sounds, learn the logic of creating algorithms and
learn musical terms such as notes, octave, rhythm, melody,
tempo, and sound. The user study had the following struc-
ture:

e The physical properties of sound (20 minutes),

e Historical context (10 minutes),

e Fundamental Music Theory (10 minutes),

e Introduction to Algorithm (20 minutes)

e Introducing Tangible Blocks and Creating Different
Programs (60 minutes)

Analysis

We had five points of inquiry for the user study:
(RQ1: Motivation) Did the user study affect children’s
motivation to continue learning programming?

(RQ2: Challenges) Which challenges did the children
encounter while using the system?

The rest of our questions aimed to observe the advantages
of tangibles, as Zuckerman suggests.

https://budgi.es/demo.html

(RQ3: Collaboration) How was the collaboration be-
tween the mentor and the group members?

(RQ4: Sensory Evaluation) Did they struggle to rec-
ognize the blocks?

(RQ5: Learning) How many of the blocks were cov-
ered during the session? Were they able to construct a
melody by themselves?

To answer the questions, we observed the children during
the study and also conducted a semi-structured interview
both with the participants and the mentors after the study.

5 RESULTS AND DISCUSSION

One of the most prominent findings of our user study was
participants enjoyment and engagement with the system.
Throughout the study, the participants were smiling, talking
excitedly and working very carefully with the system.

RQ1, Motivation: Upon finishing the user study, most
participants asked about how they could continue coding,
what would be the next updates to this music coding lan-
guage and how they could learn new programming lan-
guages. During the interviews, all participants stated that
they felt encouraged to start learning programming thanks
to their pleasant experience with our platform. Even the
two participants that knew text-based coding, stated that
using a language especially designed for themselves was
very exciting.

RQ2, Challenges: We encountered a challenge related to
distraction during the study. To explain, the groups need to
run their code occasionally to hear the creation. Throughout
the study, a cacophony of musical sounds emerged which
was slightly distracting. Regardless, the participants were
able to maintain their focus on the task. Ideally, to scale the
project, children will work in pairs and can use headphones
to overcome this issue. In this way, many children will be
still working in the same room but only their conversations
would create a slight noise.

RQ3, Collaboration: Introducing the rack eased the col-
laboration between group members. To illustrate, placing the
tangible blocks onto the rack allowed each group member to
keep tabs on the constructed algorithm. This ease allowed
them to apply a ’pair programming style’ coding. Pair pro-
gramming is a method for agile development in which one
developer writes the code and another developer reviews
the code. While the development, they switch the roles. Our
system enabled children to practice this style intuitively.

RQ4, Sensory Evaluation: We designed our prototypes
with simple forms that had two levels of information via
shape and surface properties. All in all, the forms were easily
distinguishable and recognizable for the participants . We had
refrained from adding different features to our blocks based
on our TUI design considerations that advocates simplicity.

On the other hand, we should highlight that there is an
opportunity to discover other types of block distinctions
than shape and surface information. For example, particular
sounds can emerge when the students pick up the blocks.
Another example would be creating blocks with different
masses or different textures. Yet, implementing the extra
feedback might cause a cognitive load to students, increase
the cost of blocks and contradict with the simplicity principle.
These assumptions have to be tested nevertheless.

RQ5, Learning: We designed a two-hour user study to
cover the fundamentals of music definitions and introduce
music programming. The students then experimented freely
as a group to create different melodies. At the end of the
workshop, all groups were able to arrange the tangible blocks
correctly and were able to express their musical ideas via
algorithms.

Limitations: We did not conduct the user study in a real-
classroom setting, which we plan to do so in the future. Also,
the fact that the children started the activity right after they
met their mentors might have affected their interactions and
self-expressions. In an ideal scenario, the children will work
in a place and with a mentor that they know.

6 FUTURE WORK

After the encouraging findings of our user study, we will
pursue developing our system with several next steps. First,
we have to expand our design to meet the programming
curriculum standards. For example, we will alter our design
so that it allows tinkering and remixing the projects. Second,
to fully develop the computational thinking skill, we have to
introduce additional blocks to use abstraction, decomposition
or pattern recognition skills while creating the algorithm.
To fulfill these needs, we will further develop the project in
two branches, (1) expanding the capabilities of the interface
and (2) creating new physical blocks. We will add one more
area to interface to allow students to share their projects. In
this area, children will see their own and friends’ creation.
Sharing will be supported with additional save and share
blocks. To support computational thinking development, we
will introduce two blocks in the next step: creating functions
and build parallel structures.

7 CONCLUSION

In this paper we presented our affordable tangible program-
ming tool for visually impaired children that enables creating
music with algorithms. We undertook a three-step research
process which was 1) extracting TUI design considerations
for visually impaired children with the contribution of two
visually impaired developers, 2) development of the proto-
type and 3) user study with 14 visually impaired children
(Mage=12.4). The findings of our user study indicate that our
system has the potential to support children’s engagement

and collaboration with each other. We further saw that the
design of the blocks was easy to differentiate and use. After
the user study, all the participants stated that they would
like to pursue programming education, which indicates our
design considerations ability to support their needs. Future
research can apply these considerations and explore it’s ef-
ficacy further. We contribute to the literature 1) as the first
algorithmic style- tangible music creation platform for vi-
sually impaired children and 2) provide several TUI design
considerations for students with low to zero sight. We believe
that our research can inspire researchers aiming to develop
tools for the visually impaired community.

ACKNOWLEDGMENTS

I would like to thank Ceylan Besevli for her great support in
the writing process. Ezgi Cevik from Twin Science and Ro-
botics, modelled the 3D blocks and coordinated the session
with me. Melis Kahyaoglu from Twin Science and Robotics,
drew the illustrations for the model files. T. Metin Sezgin
gave ideas to improve the kit. I would also thank all YGA vol-
unteers, who gave their own time to spread their knowledge
and confidence to young minds of Turkey.

REFERENCES

[1] A.N. Antle and A. F. Wise. 2013. Getting Down to Details: Using
Theories of Cognition and Learning to Inform Tangible User Interface
Design. Interacting with Computers 25, 1 (Jan 2013), 1-20. https:
//doi.org/10.1093/iwc/iws007

Ardublock. [n. d.]. Ardublock | A Graphical Programming Language
for Arduino. http://blog.ardublock.com/

Rupert R A Bourne, Seth R Flaxman, Tasanee Braithwaite, Maria V Ci-
cinelli, Aditi Das, Jost B Jonas, Jill Keeffe, John H Kempen, Janet Leasher,
Hans Limburg, Kovin Naidoo, Konrad Pesudovs, Serge Resnikoff, Alex
Silvester, Gretchen A Stevens, Nina Tahhan, Tien Y Wong, Hugh R
Taylor, Rupert Bourne, Peter Ackland, Aries Arditi, Yaniv Barkana,
Banu Bozkurt, TASANEE BRAITHWAITE, Alain Bron, Donald Bu-
denz, Feng Cai, Robert Casson, Usha Chakravarthy, Jaewan Choi,
Maria Vittoria Cicinelli, Nathan Congdon, Reza Dana, Rakhi Dandona,
Lalit Dandona, Aditi Das, Iva Dekaris, Monte Del Monte, Jenny Deva,
Laura Dreer, Leon Ellwein, Marcela Frazier, Kevin Frick, David Fried-
man, Joao Furtado, Hua Gao, Gus Gazzard, Ronnie George, Stephen
Gichuhi, Victor Gonzalez, Billy Hammond, Mary Elizabeth Hartnett,
Minguang He, James Hejtmancik, Flavio Hirai, John Huang, April
Ingram, Jonathan Javitt, Jost Jonas, Charlotte Joslin, Jill Keeffe, John
Kempen, Moncef Khairallah, Rohit Khanna, Judy Kim, George Lam-
brou, Van Charles Lansingh, Paolo Lanzetta, Janet Leasher, Jennifer
Lim, Hans LIMBURG, Kaweh Mansouri, Anu Mathew, Alan Morse,
Beatriz Munoz, David Musch, Kovin Naidoo, Vinay Nangia, MARIA
PALAIOU, Maurizio Battaglia Parodi, Fernando Yaacov Pena, Kon-
rad Pesudovs, Tunde Peto, Harry Quigley, Murugesan Raju, Pradeep

— —
w Do
—_ —

Ramulu, Serge Resnikoff, Alan Robin, Luca Rossetti, Jinan Saaddine,
MYA SANDAR, Janet Serle, Tueng Shen, Rajesh Shetty, Pamela Sieving,
Juan Carlos Silva, Alex Silvester, Rita S Sitorus, Dwight Stambolian,
Gretchen Stevens, Hugh Taylor, Jaime Tejedor, James Tielsch, Mil-
tiadis Tsilimbaris, Jan van Meurs, Rohit Varma, Gianni Virgili, Jimmy
Volmink, Ya Xing Wang, Ning-Li Wang, Sheila West, Peter Wiedemann,

Tien Wong, Richard Wormald, and Yingfeng Zheng. 2017. Magnitude,
temporal trends, and projections of the global prevalence of blindness

and distance and near vision impairment: a systematic review and

meta-analysis. The Lancet Global Health 5, 9 (sep 2017), e888-e897.

https://doi.org/10.1016/52214-109X(17)30293-0

Anke M. Brock. 2017. Tangible Interaction for Visually Impaired

People: why and how. World Haptics Conference - Workshop on Haptic

Interfaces for Accessibility (2017). https://hal.inria.fr/hal-01523745v1

Carnegie Mellon University. [n. d.]. Alice. Tell Stories. Build Games.

Learn to Program. https://www.alice.org/

Michael S Horn and Robert JK Jacob. 2007. Designing tangible program-

ming languages for classroom use. In Proceedings of the 1st international

conference on Tangible and embedded interaction. ACM, 159-162.

H. Ishii and B. Ullmer. 1997. Tangible bits: towards seamless interfaces

between people, bits, and atoms. Proceedings of the 8th international

conference on Intelligent user interfaces March (1997), 3-3. https://doi.
org/10.1145/604045.604048 arXiv:arXiv:1011.1669v3

Yasmin B Kafai. 2016. From computational thinking to computational

participation in K-12 education. Commun. ACM 59, 8 (2016), 26—27.

https://doi.org/10.1145/2955114

Microsoft. [n. d.]. Microsoft MakeCode for micro:bit. https://makecode.

microbit.org/

[10] Microsoft. [n. d.]. Project CodeTalk - Microsoft Research. https:
//www.microsoft.com/en-us/research/project/codetalk/

[11] Lauren R. Milne and Richard E. Ladner. 2018. Blocks4All. Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems -
CHI ’18 (2018), 1-10. https://doi.org/10.1145/3173574.3173643

[12] Scratch Team MIT Media Lab. [n. d.]. Scratch - Imagine, Program,
Share. https://scratch.mit.edu/

[13] Cecily Morrison, Nicolas Villar, Anja Thieme, Zahra Ashktorab, Eloise
Taysom, Oscar Salandin, Daniel Cletheroe, Greg Saul, Alan F. Blackwell,
Darren Edge, Martin Grayson, and Haiyan Zhang. 2018. Torino: A
Tangible Programming Language Inclusive of Children with Visual
Disabilities. Human-Computer Interaction 00, 00 (2018), 1-49. https:
//doi.org/10.1080/07370024.2018.1512413

[14] Processing Foundation. [n. d.]. Processing.org. https://processing.org/

[15] Stackoverflow. [n. d.]. Stackoverflow - How can you program if you’re
blind? - Stack Overflow. https://stackoverflow.com/questions/118984/
how-can-you-program-if-youre-blind

[16] Stackoverflow Insights. [n. d.]. Stack Overflow Developer Survey 2018.
https://insights.stackoverflow.com/survey/2018

[17] Oren Zuckerman, Saeed Arida, and Mitchel Resnick. 2005. Extending
tangible interfaces for education. June 2014 (2005), 859. https://doi.
org/10.1145/1054972.1055093

[18] Oren Zuckerman, Tina Grotzer, and Kelly Leahy. 2006. Flow blocks as
a conceptual bridge between understanding the structure and behavior
of a complex causal system. (06 2006), 880-886.

[4

—

5

—

(6

—

7

—

8

—

[

—

https://doi.org/10.1093/iwc/iws007
https://doi.org/10.1093/iwc/iws007
http://blog.ardublock.com/
https://doi.org/10.1016/S2214-109X(17)30293-0
https://hal.inria.fr/hal-01523745v1
https://www.alice.org/
https://doi.org/10.1145/604045.604048
https://doi.org/10.1145/604045.604048
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1145/2955114
https://makecode.microbit.org/
https://makecode.microbit.org/
https://www.microsoft.com/en-us/research/project/codetalk/
https://www.microsoft.com/en-us/research/project/codetalk/
https://doi.org/10.1145/3173574.3173643
https://scratch.mit.edu/
https://doi.org/10.1080/07370024.2018.1512413
https://doi.org/10.1080/07370024.2018.1512413
https://processing.org/
https://stackoverflow.com/questions/118984/how-can-you-program-if-youre-blind
https://stackoverflow.com/questions/118984/how-can-you-program-if-youre-blind
https://insights.stackoverflow.com/survey/2018
https://doi.org/10.1145/1054972.1055093
https://doi.org/10.1145/1054972.1055093

	Abstract
	1 Introduction
	2 Theory and Related Work
	Programming Education
	Tangible Programming Tools

	3 Design of the Music Blocks
	Workshop with Visually Impaired Developers
	Conceptual Prototype

	4 User Study
	Analysis

	5 Results and Discussion
	6 Future Work
	7 Conclusion
	Acknowledgments
	References

